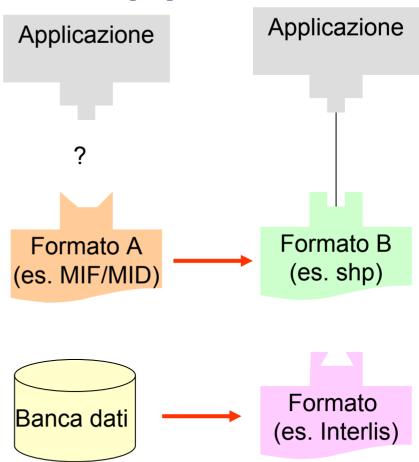
Interscambio di formati e modelli di dati

Giornata di Studio Progetto di informatizazzione dei PR

Katia Dalle Fusine

Interscambio di dati

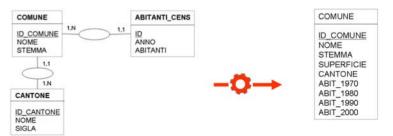
- Disponibilità sempre maggiore di dati in formato numerico
- Integrazione di dati in scala locale e regionale
- Moltiplicazione degli strumenti / applicazioni GIS
- Adozione di standard per l'accesso e per i formati di dati
- Interoperabilità: connessione tra applicazioni
- Trasferimento di dati tra software e versioni di software
- Pubblicazione di dati su Internet
- Diffusione dei dati


Terminologia

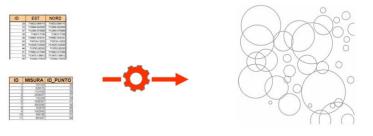
 Formato di dati: è una strutturazione dell'informazione numerica destinata ad essere interpretata da un specifico sistema informatico

 Modello dati: è un insieme di meccanismi di astrazione per definire una base di dati, con associato un insieme predefinito di operatori e di vincoli di integrità.

Problematica (1)

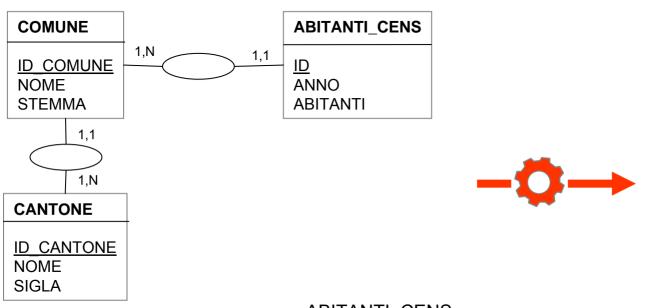

- Ricevo un file nel formato vettoriale GIS A (p.es. MIF/MID) ma non riesco a leggerlo con il mio software che accetta solo il formato vettoriale GIS B (p.es. shp)
- Devo fornire al cantone i dati in un formato C ma attualmente i miei dati si trovano in una banca dati

⇒ PROBLEMA DI CONVERSIONE DI FORMATI


Problematica (2)

Da modello A a modello B

 Costruire poligoni a partire da linee -\$→


 Creare aree d'interesse a partire da dati tabellari

⇒ PROBLEMA DI TRASFORMAZIONE DI DATI

Problematica (2.1): Da modello A a modello B

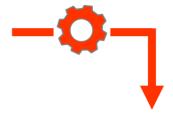
 I miei dati sono strutturati secondo un modello di dati A ma devo fornirli secondo un modello di dati B

COMUNE
ID_COMUNE NOME STEMMA SUPERFICIE CANTONE ABIT_1970 ABIT_1980 ABIT_1990 ABIT_2000

COMUNE

Modello concettuale

Modello logico

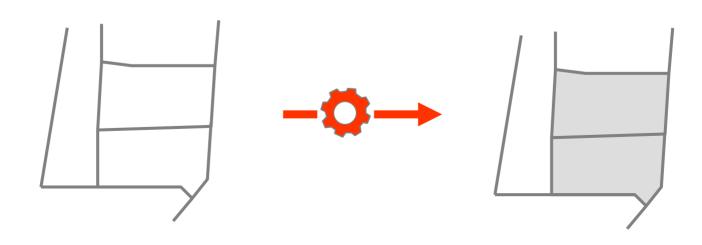

ID_COMUNE	NOME	STEMMA	ID_CANTONE
1001	Bellinzona	bellinzona.jpg	21
1043	Lugano	lugano.jpg	21

CANTONE

ID_CANTONE	NOME	SIGLA
21	Ticino	TI

ABITANTI CENS

ID	ANNO	ABITANTI	ID_COMUNE
100	1970	16.979	1001
101	1980	16.743	1001
102	1990	16.849	1001
103	2000	16.463	1001
104	1970	41.331	1043
105	1980	45.422	1043
106	1990	46.113	1043
107	2000	50.857	1043



COMUNE

ID_COMUNE	NOME	STEMMA	CANTONE	SUPERFICIE	ABIT_1970	ABIT_1980	ABIT_1990	ABIT_2000
1001	Bellinzona	bellinzona.jpg	Ticino	19.13	16.979	16.743	16.849	16.463
1043	Lugano	lugano.jpg	Ticino	32.08	41.331	45.422	46.113	50.857

Problematica (2.2): Costruire poligoni da linee

 Un collega mi fornisce dei dati su delle zone digitalizzate sotto forma di linee mentre io devo fornire dei poligoni

Problematica (2.3): Creare aree d'interesse

 Devo creare un file GML in coordinate WGS84 contenente le aree attorno alle stazioni di misura (file ascii con coordinate CH1903) il cui raggio è uguale alla misura effettuata sulla stazione (file csv).

ID	EST	NORD
29	716633.994715	716633.994715
33	715956.842005	715956.842005
37	712364.575995	712364.575995
38	714613.7338	714613.7338
40	716567,016141	716567.016141
42	716724.12523	716724.12523
45	712529.722045	712529.722045
46	715762.85203	715762.85203
51	715943.217494	715943.217494
52	713475.138612	713475.138612
28	718984 20874	716984 20874

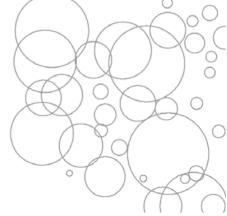
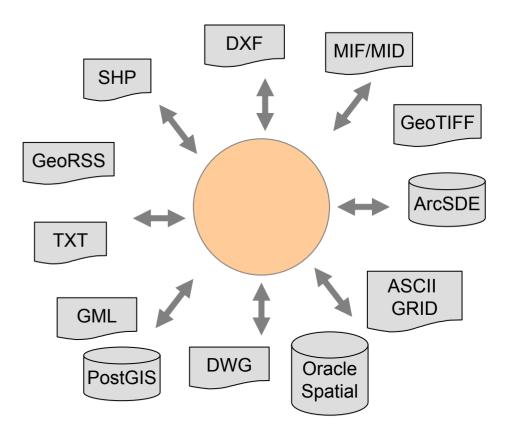

ID	MISURA	ID_PUNTO
1	751103	28
2	829315	32
3	1101928	36
4	2484407	37
5	742205	39
6	1658367	41
7	3963085	44
8	762878	45
9	1063955	50
10	458185	51

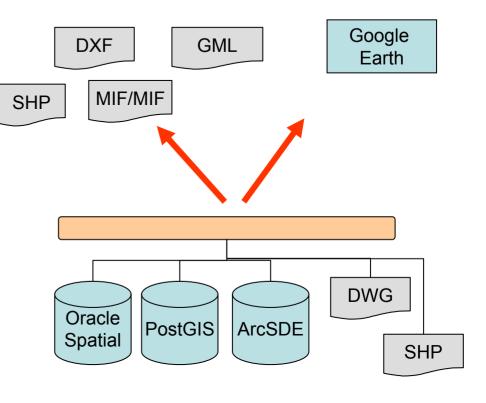
Tabella con coordinate stazioni di misura

Tabella con misure e indicazione della stazione


- Creazione geometria punti
- Trasformazione CH1903→WGS84
- Collegamento (join) stazioni misure con tabella misure
- Creazione buffer (area)

Aree centrate sulle stazioni di misura e con raggio uguale alla misura rilevata

Problematica (3)


- Durante un progetto devo lavorare con diversi tipi di dati spaziali e non, in formati diversi e modelli diversi.
- Devo integrare diversi tipi di dati provenienti da diverse fonti per creare un modello di dati unificato adattato al mio progetto.

⇒ PROBLEMA DI INTEGRAZIONE DI DATI

Problematica (4)

Nella mia
 organizzazione lavoro
 su diversi tipi di
 banche dati e con
 diversi formati ma
 spesso devo fornire ai
 clienti gli stessi dati in
 formati diversi

⇒ PROBLEMA DI DISTRIBUZIONE DATI

SOLUZIONI

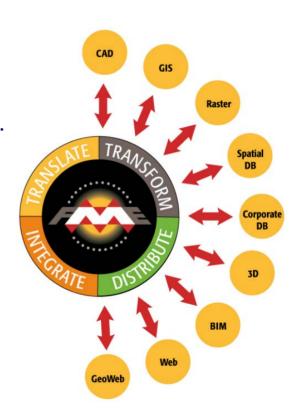
- Tradizionalmente le applicazioni GIS hanno la capacità di leggere, importare o esportare un limitato numero di formati di dati geografici (conversione di dati)
- Molte di queste problematiche possono essere risolte singolarmente con le diverse applicazioni GIS tradizionali eseguendo operazioni manuali (query, ecc.) o sviluppando script ad-hoc
- Oppure utilizzando i cosidetti Spatial ETL tools
- ...sempre più spesso alcune "funzionalità" dei Spatial ETL tools vengono integrate dalle applicazioni GIS nei loro prodotti

Spatial ETL Tools

- Spatial ETL Tools (o strumenti ETL Spaziali):
 - E = Extract = Estrae
 - T = Transform = Trasforma
 - L = Load = Carica
- Sono strumenti utilizzati per manipolare e trasformare i dati spaziali e non.
- Possono sia ristrutturare modelli e geometrie di dati che convertire dati in un nuovo formato output.
- Per esempio è possibile eliminare o rinominare attributi, calcolare o assegnare dei valori ad attributi nuovi o esistenti.
- Questi strumenti permettono di integrare modelli di dati complessi ristrutturati in un ambiente di geoprocessamento.
- Gli strumenti ETL spaziali forniscono capacità di trasformazione di dati all'interno di ambienti di geoprocessamento e possono essere usati per importare, esportare e trasformare dati.

FME: esempio di software Spatial ETL

- Feature Manipulation Engine (FME) è una soluzione sviluppata dalla società Safe Inc.
- I prodotti FME permettono la:
 - CONVERSIONE di dati in numerosi formati


- INTEGRAZIONE di numerosi tipi di dati
- DISTRIBUZIONE di dati spaziali

Funzionalità

- Conversione di dati fra più di 100 formati diversi
- Pacchetto di strumenti per il trattamento di dati
- Modifica del modello di dati
- Caricamento di dati in Oracle Spaziale, ArcSDE, ecc.
- Realizzazione di analisi spaziali
- Migrazione da un sistema di coordinate ad un altro
- Controllo della qualità dei lavori di acquisizione
- Correzione delle geometrie incoerenti
- Generazione di DTM o di TIN a partire da dati vettoriali
- Sovrapposizione di dati 2D su un DTM
- Trasformazione di dati 2D in 3D in funzione di attributi
- Generazione di curve di livello a partire da un DTM
- Conversione e trattamento d'immagini raster (tiff, ecw, ecc.)
- ...

Formati supportati

- Più di 100 formati supportati
- Per ogni formato informazioni sulle sue caratteristiche
- Esempio: formato ESRI Shape

Geometry Support					
Geometry	Supported?	Geometry	Supported?		
aggregate	yes	point	yes		
circles	no	polygon	yes		
circular arc	no	raster	no		
donut polygon	yes	solid	no		
elliptical arc	no	surface	yes		
ellipses	no	text	no		
line	yes	z values	yes		
none	yes				

File Name Extension	Contents
.shp	Geometric data
.shx	Index to the geometric data
.dbf	Attributes for the geometric data
.sbn and .sbx	Spatial index for the geometric data. These two files will not exist unless you generate them with an ESRI product.

BIM/3D

- Adobe PDF CityGML
- Industry Foundation Class
- STEP Files (IFC) LandXML

GIS/CAD/Database

- 1Spatial Gothic® ■ 1Spatial Internal Feature
- Format (IFF) = APT
- ASPRS Lidar Data Exchange Format (LAS)
- Additional Military Layers
- Adobe Flash (SWF) Adobe Illustrator EPS
- Aeronautical Information Exchange Model (AIXM)*
- Autodesk AutoCAD DWF Autodesk AutoCAD DWG/DXF
- Autodesk AutoCAD Map 3D Object Data
- Autodesk MapGuide SDF Autodesk VISION GINA
- B.C. MOEP
- BC MoF Electronic Submission Framework - ABR, FSP, FTA and RESULTS
- Bentley MicroStation Design ■ Bentley MicroStation
- GeoGraphics CITS Data Transfer Format
- Canadian Council on Geomatics Interchange
- Format (CCOGIF)* ■ Caris NTX
- Format (CGDEF) DES
- Danish DSFL ■ Danish UFO
- Digital Line Graph (DLG) ■ Dutch TOP10 GML
- FDIGéO ■ ESRI ArcGIS Laver
- ESRI ArcGIS Map (.mxd)
- ESRI ArcInfo Coverage
- ESRI Arcinfo Export (E00) ■ ESRI ArcInfo Generate
- ESRI ArcSDE
- ESRI Geodatabase (ArcSDE)** ■ ESRI Geodatabase (File-
- based)+

- ESDI Condatabaso (MDD)
- ESRI Goodatabase (XMI) ■ ESRI PC Arcinfo Coverage
- ESRI Shape** ■ Encansulated PostScript (EPS) ■ FDO Providers (AutoCAD Map
- 3D 2008) ■ FDO Providers (FME)
- FMF Feature Store (FFS) - Facot YDD
- FalconView File ■ GEODESYS StruMan GML (Geography Markup
- Languago) GML SF-0 (Geography Markup Language Simple Features Level SF-0 Profile)
- GPS eXchange Format ■ Genasys GenaMan
- GeoConcept Map GooTask Server ■ Geographic Data Files (GDF)*
- Geographic Data Management System (GDMS) ■ German AAA GML Exchange
- Format (NAS) ■ German EDBS EDB*
- German GTI/Restore* ■ German Geogrid OVL/ASC*
- (GTI) GTViewer Halliburton GeoGraphix CDF
- IDRISI Vector Format III Open Geospatial Datastore
- Interface (OGDI) ISO8211
 - Informatica* ■ Intergraph FRAMME Standard
- ComGraphix Data Exchange
 - Intergraph GeoMedia SQL Server Warehouse
 - Intergraph MGE Japanese Profile for Geographic Information
 - Standards (IPGIS) KLT Atlas ASCII* Land Victoria Incremental
 - Update Format (IUF) ■ Landmark Zvcor Graphics File
 - Landonline Leica Independent Data Exchange Format (IDEX)

- ManGuide SDI. Mapinfo MIF/MID ■ MapInfo SpatialWare
- Mapinfo TAB (MEAL) Mapinfo TAB (MITAB)
- Mehrzweckkarte Wien (MZK)* Metria AutoKa FF
- Microsoft MapPoint Web XML Microsoft SOL Server Spatial
- MultiGen-Paradigm Digital Feature Data (DFD)
- MvSOI Snatial
- NEN 3610 (GML) ■ NULL (Nothing)
- National Geospatial Intelligence Agency (NGA) Digital Feature Analysis Data (DEAD)
- NGA GEOnot Namos Sorver OS (GB) MasterMan
- OS (GB) NTF ■ OeNORM A2260*
- Oraclo SOL Loador
- Oracle Spatial Object** Oracle Spatial Relational
- Osmose FastGate (SMSF)*
- PHOCUS PHODAT ■ PenMetrics GRD
- PostGIS
- Graphic Technologies Inc. Regional Geographic Information System (REGIS)
- S-57 (ENC) Hydrographic IBM DB2 Spatial Data*
 - SEG-P1 ■ SEG-Y
 - SICAD
 - SPANS VEH/VEC/TBA* STAR-APIC Mercator MCF ■ Scalable Vector Graphics
- Exchange Format (SEF)* (SVG) Intergraph GeoMedia Access ■ Smallworld 3 and 4
- Warehouse
 - Interchange Format (SAIF) Spatial Data Transfer Standard (SDTS)
 - Standard Linear Format (SLF) ■ Summary Report

Spatial Archive and

- Swedish I2K (Interface 2000) Swedish KF85 Swedish MASIK
- Swiss INTERLIS* ■ Tele Atlas MultiNet Interchange format
- Tobin TDRBM II Data Distribution Format
- Trimble JobXML

- ILS Concue Durgau TICED/ GMI and TIGER/Line
- = ILS Environmental Protection Agency (EPA) Geospatial Data VALIS/ASC*
- Vector Markup Language
- (VML) Vector Product Format (VPF)
- Coverage ■ Vector Product Format
- Database (VPF DB)* Virtual Poality Modeling
- Language (VRML)++ ■ VoxelGeo OpenInventor
- (VOIV) XML (Extensible Markup
- Language)++ Z-Map (ASCII) ■ rmDATA MXF
- Non-Spatial
- Comma Separated Value (CSV)
- dBASE (DBF) Directory and File Pathnames
- IBM DB2
- Microsoft Access
- Microsoft Excel Microsoft SQL Server
- MvSOI
- ODBC 2x/3x Oracle
- Pervasive PSOL
 - PostgreSOL
 - SQLite ■ Tabular Data
 - Text File
 - Raster ■ Aircom ENTERPRISE Map
 - Data/ASSET Data* ARC Digitized Raster Graphics
 - (ADRG) ARC Standard Raster Product
 - (ASRP) ■ Canadian Digital Elevation
 - Data (CDFD)
 - Color Raw Raster Compressed ARC Digitized Raster Graphics (CADRG)*
 - Digital Map Data Format (DMDF)
 - Digital Terrain Elevation Data (DTED)
 - ER Mapper ECW ■ ERDAS IMAGINE
 - ERDAS RAW ■ ESRI .hdr RAW Raster

- ESDLASCILICAIA
- FSRI ArcGIS Binary Grid (AIG)
- ESRI ArcSDE Rastor ■ ESRI ArcSDE Raster Catalog
- ESRI ArcSDE Raster Map ■ GIF (Graphics Interchange
- Format)
- GIF Rasterizer GenTIFF (Gen-referenced)
- Tagged Image File Formati ■ Golden Software Surfer 6
- Rinary Grid Hierarchical Data Format 4 (HDF4) ASTER and Hyperion
- ITT ENVL.hdr RAW Raster
- JPEG ■ Landmark Z-MAP
- LizardTech MrSID
- Marconi PlaNot*
- Microsoft BMP ■ NITF (National Imagery
- Transmission Format)
- Network Common Data Form (netCDF)
- Numoric Daw Pactor
- Oracle Spatial GeoRaster
- PCI Geomatics Database File (PCIDSK)
- PNG (Portable Network Graphics)
- PNG Rasterizer ■ RADARSAT-2 XML
- TIFF (Tagged Image File
- Format) U.S. Geological Survey Digital
- Elevation Model (USGSDEM) Vertical Mapper Grid (NGrid)

X11 Pixmap (XPM)

- GeoJSON (Geographic JavaScript Object Notation)
- GeoRSS/RSS Feed Google Earth KML (Keyhole
- Markup Language) JSON (JavaScript Object)
- Notation) ■ WFS (Web Feature Service) WMS (Web Map Service)

[2008]

Categorie di trasformazioni

- FME offre una flessibilità completa nel trasformare i propri dati nel modello di dati necessario
- Più di 300 trasformazioni disponibili permettono di ristrutturare i propri dati

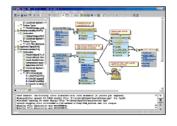
CATEGORY	DESCRIPTION	EXAMPLE OPERATIONS
3D	Create and modify three-dimensional surface and solid geometries	■ supporting CSG (Constructive Solid Geometry) Boolean operations between solids ■ converting the face, donut, or polygon of a feature to extrusion geometry
Calculators	Calculate a value and supply it to a new attribute on a feature	 calculating areas and lengths counting features adding counts as attributes reformatting date or time strings adding results of arithmetic expressions generating points inside areas determining topologica relationships
Collectors	Operate on collections of features to merge their attributes or geometries, have their orders altered, or replace the collection of features with new features	■ aggregating features ■ decomposing aggregates ■ combining attributes ■ finding the closest neighbor ■ testing for common segments ■ aggregating or crowex hulls for multiple features ■ testing for common segments
Database	Extract data from external spatial databases and merge it onto query features; extract attributes from non-spatial databases and join to features	querying spatial and non-spatial data in ESRI ArcSDE® and Oracle Spatial ioining attributes from non-spatial databases such as Microsoft® Access, Microsoft® Excel®, Microsoft® SQL Server™, MySQL®, PostGIS and SQLite to a feature executing arbitrary SQL statements
Filters	Perform tests on feature geometry and/ or attributes and allow the feature to be routed to different destinations, depending on the outcome of the test	■ segregating aggregates from single features ■ routing data based on attribute values or geometry ■ detecting changes in features ■ removing duplicate features ■ detecting matching features ■ sampling to create subsets of input features
Geometric Operators	Operate on the geometry of individual features or groups of features	■ building area features ■ overlaying areas ■ overlaying areas ■ dispoing ■ dispoing features ■ ine labeling ■ dissolving features ■ ine joining ■ computing topology
Infrastructure	Enable interaction with the underlying FME translation engine facilities	adding attributes logging features retrieving URLs setting feature colors in estimation of the setting variables setting feature colors invoking the FME Universal Viewer to view data sets
Linear Referencing	Use linear referencing data structures on FME features to create and apply measure- related information held in attributes onto the geometry of FME features	calculating measures setting measures on features shortening line features snipping vertices
Lists	Use a list structure to handle multiple values for each attribute	creating, exploding and searching attribute lists extracting information from attribute lists
Manipulators	Modify (or manipulate) the geometry or attributes of individual features	■ generalizing area feature boundaries □ creating centerlines □ rounding off coordinate value value features □ curvefitting to smooth lines □ coordinate systems
Rasters	Create, use or output raster data	georeferencing rasters converting vector features to rasters decomposing rasters into a single raster feature decomposing rasters into point features
Strings	Operate on character strings held in FME attributes	searching
Surfaces	Operate on data which defines a 2.5D surface	■ generating contours or Digital Elevation Models (DEMs)
Web Services	Access web services via the HTTP protocol	■ sending requests to web services and making results available to the FME infrastructure ■ creating or consuming GeoRSS/RSS/GeoJSON/JSON documents
Workflow	Run FME workspaces either locally or on an FME Server	■ submitting or running jobs on FME Server ■ running FME workspaces locally
XML	Work with XML data	mapping XML elements into features using stylesheets to convert XML documents querying collections of XML data

[2009]

Componenti di FME Desktop

FME Universal Viewer

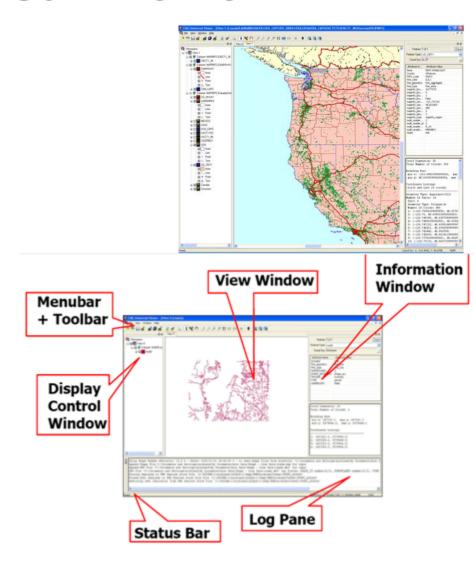
Visualizzazione di formati diversi di dati spaziali, prima, durante e dopo conversione


FME Universal Translation

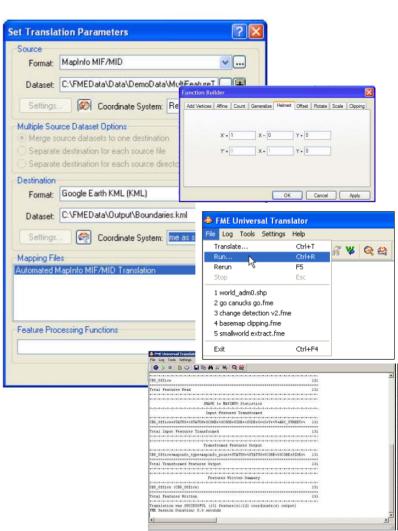
Conversione rapida da un formato predefinito ad un altro, o per utenti avanzati, realizzazione di processi più complessi a partire da scripts

FME Workbench

Controllo della conversione e trasformazione grazie a un'interfaccia grafica del flusso dei dati (dalla fonte all'arrivo)


FME Command Line Engine

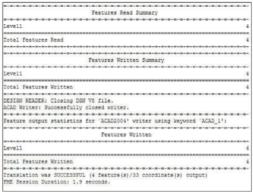
Comandi in linea


FME Universal Viewer

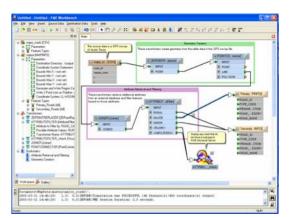
- Permette di visualizzare i dati ed "ispezionarli"
 - geometria
 - simbologia
 - attributi
 - formato dati
 - modello dati
 - quantità dati
 - risultato processo

FME Universal Translator

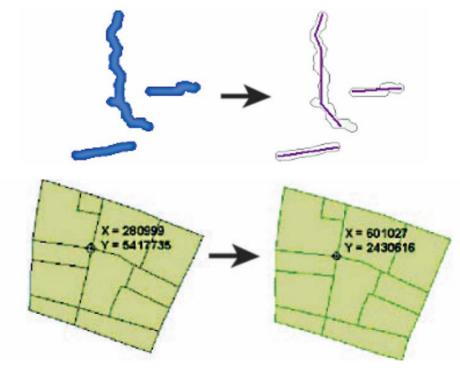

- È lo strumento per traduzioni / conversioni
 - formati
 - coordinate
 - ...trasformazioni semplici
 - sistemi di coordinate



Translation log


FME Workbench

- Permette di creare delle trasformazioni avanzate
- Esistono più di 300 funzioni (factories) per trasformare i dati (geometria, attributi, proiezione, ecc.)

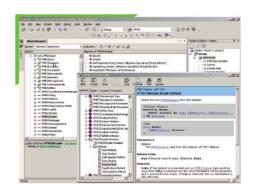


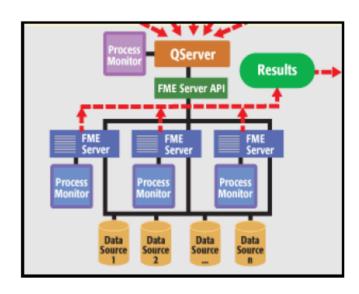
Esempi di trasformazioni (factory)

CenterLineReplacer

Reprojector

Concatenator


Altri componenti e altri prodotti


Altre componenti:

- FME Objects
- FME Application Extenders
- FME Plug-In SDK

Altri prodotti:

- FME Server
- FME Data Server
- FME Plugins

FME Application Extenders

Application	Extender	Package	Functionality	Contact
ArcGIS	Data Interoperability Extension @	Add On	LOTS!	ESRI or Safe
ArcGIS	FME Extension for ArcGIS 🗗	with FME	Import FME supported formats, export to ESRI formats	Safe
ArcIMS	FME SpatialDirect for ArcIMS 🗗	Add On	Extends ArcIMS Data Delivery to support over 30 additional formats	Safe
Arc∀iew	FME Themes for ArcView €	with FME	Read FME supported formats in ArcView	Safe
AutoDesk Map 3D 2005	AutoDesk Map 3D 2005 FME Integration @	with FME	Access to 100+ extra formats	Safe
AutoDesk MapGuide	FME Provider for AutoDesk MapGuide 🗗	with FME	Publish FME supported formats directly	Safe
AutoDesk MapGuide	FME SpatialDirect for AutoDesk MapGuide &	Add On	Web mapping and data download of FME supported formats	Safe
GeoMedia	FME Data Server for GeoMedia 🗗	with FME	Access spatial data with an FME GDO	Safe
GeoMedia	FME ArcSDE Editing for GeoMedia 🗗	with FME	Edit ArcSDE data directly from within GeoMedia	Safe
GeoMedia WebMap	FME Data Server for GeoMedia WebMap ਦਾ	with FME	Read-Only access of FME supported formats	Safe
GeoMedia WebMap	FME SpatialDirect for GeoMedia WebMap ₽	with FME	Web Mapping and Data Download of FME supported formats	Safe
MapInfo	MapInfo Universal Translator 🗗	with MapInfo	Convert to/from MapInfo and other common GIS formats	MapInfo
MapPoint	FME Extension for MapPoint 🗗	with FME	Import FME supported formats to MapPoint	Safe
Smallworld	Spatial Objects Manager (SOM) for FME &	Add On	Access to various formats within Smallworld	GE/Smallworld

FME Server

- distribuire i dati geografici attraverso il Web.
- traformare dei grandi volumi di dati.
- ripartire e condividere operazioni spaziali all'interno di un'organizzazione.

Ulteriori informazioni

Katia Dalle Fusine TiGIS Sistemi Informativi Geografici

> Piazza Dante 8 CP 6204 CH-6900 Lugano t. +41 (0)91 921 02 00 f. +41 (0)91 921 15 71 katia.dallefusine@tigis.ch tigis.ch